SPARINGVISION GENOMIC MEDICINES FOR OCULAR DISEASES

Development of a Mutation-Independent Gene Therapy for Cone Reactivation in the Treatment of Retinitis Pigmentosa

HANEN KHABOU, PH.D.

ASGCT ANNUAL MEETING, LOS ANGELES - MAY 20TH, 2023

Disclosure

I am an employee of SparingVision and hold shares in the company.

Retinitis Pigmentosa: progressive vision loss

- Most frequent inherited blindness, affecting 1.5 million people worldwide
- Rare: prevalence is 1/4000
- Progressive rod loss, followed by cone loss
- Eventually can lead to blindness

Mutation-independent gene therapy for RP treatment

High genetic heterogeneity

- Gene addition therapy for each gene not possible \bullet
- Only for recessive forms
- Unknown mutation \rightarrow gene addition not possible

 \rightarrow Necessity to develop mutation-independent gene therapies

1) Prevention of cone degeneration with Rod-derived Cone Viability Factor, RdCVF/RdCVFL

 \rightarrow e.g. SPVN06, approved for clinical testing in patients

2) Restoration of cone activity

 \rightarrow <u>Development of SPVN20</u>: Restoration of a short phototransduction cascade

Figure 2 | Functional categorization of genes that influence photoreceptor degeneration. Pie chart showing the functional categorization of 146 genes implicated in PR degeneration. The data are from the Retinal Information Network

Wright et al., Nat Review Genetics, 2010

Phototransduction cascade in cone photoreceptors

Can we provide an alternative phototransduction cascade?

- Phototransduction cascade: process with series of proteins involved in conversion of light to hyperpolarization of the photoreceptor
 - In RP, proteins of the phototransduction cascade in cones are abnormal, e.g.
 - Phosphodiesterase (PDE)
 - Transducin (GNAT2)
 - Simon et al. (preprint), Hassal et al., 2020
 - \rightarrow Dysfunctional cone

GIRK links GPCR activity to hyperpolarization

G-protein coupled inward rectifying K+ channel (GIRK)

- Activation of a **G-protein coupled receptor (GPCR)**
- Recruitment of a G protein 2.
- 3. Activation of GIRK
- **GIRK** hyperpolarizes neurons
- Four distinct mammalian genes (GIRK1-4)
 - GIRK1-3 broadly expressed in the CNS
 - GIRK4 expressed mainly in the heart

6

Cone Opsin + GIRK1/2 in vitro

In HEK293 cells expressing GIRK1/2 channel

The cone opsin activates the GIRK channel via an endogenous G protein

Light modulation

Masseck et al., Neuron 2014

Light-responses recorded in vitro in cells coexpressing opsin and GIRK channels

Evaluation of GIRK effect in HEK cells stably expressing melanopsin using single cell patch clamp recordings

GIRK currents recorded upon light stimuli

→ HEK cells become light – sensitive and –responsive
→ hGIRK1(F137S) is the most efficient variant: selection for development

SPVN20: Restoration of cone activity using a 'short' phototranduction cascade?

- Activated opsin recruits an endogenous G-protein
- GIRK activated by the G-protein
- \rightarrow Short phototransduction cascade relying on endogenous opsins: color vision expected to be restored

In vivo proof-of-concept in rd10 mice: vision restoration with GIRK1(F137S)

Objective: evaluation of GIRK effect on visual improvement

rd10/rd10 mice, single bilateral subretinal AAV8 administration

Arm	Treatment	Dose (vg/eye)	Number of animals (n=47)
1	Vehicle	-	8
4		Higher dose	8
5	AAV8-PRI.1-IIGIRKI(FI373)	Lower dose	8
6	Uninjected	_	7

Optokinetic Reflex

R1.7	SV40i	GIRK1(F137S)	bGHpA -	3' ITR
7 kb	97 bp	1.5 kb	208 bp	J

Electroretinogram schematic

In vivo proof-of-concept in rd10 mice: vision improvements, AAV8-GIRK subretinal delivery

OKT at P37

ERG at P37

→ Significant visual improvements 3 weeks after delivery

Statistical test: 1-Way ANOVA. Comparison with <u>vehicle group</u>*, p>0.05; **, p<0.01; ***, p>0.001

 → Higher dose at P37: significant vision improvements, consistent with GIRK expression
→ Effect no longer recorded at P48 or P60
→ Promising results in an extremely fast RP model

- 5 RP patients (FFB/Cleveland Clinic collection) Age: 63-92 years old
- Dormant cones were found in 4/5 RP patients

Simon et al., under revision

RP patients in late stage maintain cone opsin and arrestin

Strategy can be applied to human patients

In vivo intravitreal delivery of SPVN20 in healthy NHPs results in strong GIRK expression in foveal cones

Intravitreal injection of SPVN20, 7^e10 vg/eye Necropsy at D84 and anti GIRK immunohistochemistry

Fovea

High number of foveal cones express GIRK1(F137S), at the cone membrane

Conclusions

AAV-GIRK gene therapy proof-of-concept

- GIRK provides restoration of a short phototransduction cascade
- GIRK restores cone function and improves vision in mouse models of RP

SPVN20 development

- CTA enabling studies underway, CTA planned for 2024
- Focus on IVT delivery, that is noninvasive to the retina, especially in fragile RP retinas
- Histology from RP patients' retinas support AAV-GIRK gene therapy rationale → Therefore, strong rationale to develop a gene therapy to deliver GIRK to late-stage RP patients with the aim of restoring vision

Acknowledgments

Institut de la Vision

Deniz Dalkara Mélissa Desrosiers Guillaume Labernede Camille Robert

Ruhr University

Brix Mücher **Stefan Herlitze**

SparingVision

Mehdi Gasmi Florence Lorget Cardillia-Joe Simon **Brynne Freshour** Lucie Churet Mélanie Marie **Anne-Sophie Gautron**

Cleveland Clinic/FFB

Vera Bonilha Bela Anand-Apte

EyeCRO

Rafal Farjo Alain Quimbao Phillip Vanlandingham Erin Livingston

Virscio Quincy Edwards Matthew Lawrence

StageBio Dane Brady Craig Zook

